GOOGLE data

Load packages:

pacman::p_load(
      here,      # file locator
      tidyverse, # data management and ggplot2 graphics
      skimr,     # get overview of data
      janitor,   # produce and adorn tabulations and cross-tabulations
      tsibble,
      imputeTS
)

The data published by Google offers information related to mobility using the Google ecosystem application services such as Android. The dataset information is available worldwide link, but in our case, only the information relating to Spain was extracted.

It provides detail information about:

# List local google raw files
google_files <- list.files(
      path = here("data", "raw"),
      recursive = TRUE,
      full.names = TRUE,
      pattern = "*Region_Mobility_Report.csv"
)
google_data <- map_dfr(
      .x = google_files, 
      .f = ~read_csv(.x, show_col_types = FALSE)
)
google_data
# A tibble: 50,702 × 15
   country_region_code country_region sub_region_1 sub_region_2 metro_area
   <chr>               <chr>          <chr>        <chr>        <lgl>     
 1 ES                  Spain          <NA>         <NA>         NA        
 2 ES                  Spain          <NA>         <NA>         NA        
 3 ES                  Spain          <NA>         <NA>         NA        
 4 ES                  Spain          <NA>         <NA>         NA        
 5 ES                  Spain          <NA>         <NA>         NA        
 6 ES                  Spain          <NA>         <NA>         NA        
 7 ES                  Spain          <NA>         <NA>         NA        
 8 ES                  Spain          <NA>         <NA>         NA        
 9 ES                  Spain          <NA>         <NA>         NA        
10 ES                  Spain          <NA>         <NA>         NA        
# … with 50,692 more rows, and 10 more variables: iso_3166_2_code <chr>,
#   census_fips_code <lgl>, place_id <chr>, date <date>,
#   retail_and_recreation_percent_change_from_baseline <dbl>,
#   grocery_and_pharmacy_percent_change_from_baseline <dbl>,
#   parks_percent_change_from_baseline <dbl>,
#   transit_stations_percent_change_from_baseline <dbl>,
#   workplaces_percent_change_from_baseline <dbl>, …
skim(google_data)
Data summary
Name google_data
Number of rows 50702
Number of columns 15
_______________________
Column type frequency:
character 6
Date 1
logical 2
numeric 6
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
country_region_code 0 1.00 2 2 0 1 0
country_region 0 1.00 5 5 0 1 0
sub_region_1 805 0.98 5 19 0 19 0
sub_region_2 16087 0.68 4 22 0 43 0
iso_3166_2_code 805 0.98 4 5 0 62 0
place_id 0 1.00 27 27 0 63 0

Variable type: Date

skim_variable n_missing complete_rate min max median n_unique
date 0 1 2020-02-15 2022-04-29 2021-03-23 805

Variable type: logical

skim_variable n_missing complete_rate mean count
metro_area 50702 0 NaN :
census_fips_code 50702 0 NaN :

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
retail_and_recreation_percent_change_from_baseline 56 1.00 -24.20 25.84 -97 -34 -20 -9 100 ▂▇▇▁▁
grocery_and_pharmacy_percent_change_from_baseline 845 0.98 2.55 26.92 -96 -7 5 15 258 ▁▇▁▁▁
parks_percent_change_from_baseline 305 0.99 16.83 57.82 -94 -14 8 36 569 ▇▂▁▁▁
transit_stations_percent_change_from_baseline 1410 0.97 -16.74 28.68 -100 -31 -15 -1 177 ▂▇▁▁▁
workplaces_percent_change_from_baseline 42 1.00 -20.91 19.27 -92 -29 -16 -9 70 ▁▂▇▁▁
residential_percent_change_from_baseline 387 0.99 5.77 7.49 -12 1 4 8 48 ▂▇▁▁▁

There are some discrepancies between the NA data.

sub_region_1 and iso_3166_2_code has a total of 98,4% of completness while sub_region_2 has only 68,3%. One of the reasons could be that some sub_regions in Spain are considered both Autonomous Communities (AC)/Autonomous Cities (C) and Provinces (Pr).

For those cases, sub_region_2 contains missing values.

# Fix sub_region_2 missing data
google_data <- google_data %>% 
      mutate(
            sub_region_2 = case_when(
                  sub_region_1 == "Asturias" ~ "Asturias",
                  sub_region_1 == "Balearic Islands" ~ "Baleares",
                  sub_region_1 == "Cantabria" ~ "Cantabria",
                  sub_region_1 == "Ceuta" ~ "Ceuta",
                  sub_region_1 == "Community of Madrid" ~ "Madrid",
                  sub_region_1 == "La Rioja" ~ "Rioja",
                  sub_region_1 == "Melilla" ~ "Melilla",
                  sub_region_1 == "Navarre" ~ "Navarra",
                  sub_region_1 == "Region of Murcia" ~ "Murcia",
                  TRUE ~ sub_region_2
            )
      )
google_data %>%  
      tabyl(sub_region_1) %>% 
      adorn_pct_formatting()
        sub_region_1    n percent valid_percent
           Andalusia 7245   14.3%         14.5%
              Aragon 3220    6.4%          6.5%
            Asturias  805    1.6%          1.6%
    Balearic Islands  805    1.6%          1.6%
      Basque Country 3220    6.4%          6.5%
      Canary Islands 2415    4.8%          4.8%
           Cantabria  805    1.6%          1.6%
    Castile and León 8050   15.9%         16.1%
   Castile-La Mancha 4830    9.5%          9.7%
           Catalonia 4025    7.9%          8.1%
               Ceuta  798    1.6%          1.6%
 Community of Madrid  805    1.6%          1.6%
         Extremadura 2415    4.8%          4.8%
             Galicia 4025    7.9%          8.1%
            La Rioja  805    1.6%          1.6%
             Melilla  799    1.6%          1.6%
             Navarre  805    1.6%          1.6%
    Region of Murcia  805    1.6%          1.6%
 Valencian Community 3220    6.4%          6.5%
                <NA>  805    1.6%             -
table(google_data$sub_region_2)

              A Coruña                  Álava               Albacete 
                   805                    805                    805 
              Alicante                Almería               Asturias 
                   805                    805                    805 
                 Ávila                Badajoz               Baleares 
                   805                    805                    805 
             Barcelona                 Biscay                 Burgos 
                   805                    805                    805 
               Cáceres                  Cádiz              Cantabria 
                   805                    805                    805 
             Castellón                  Ceuta            Ciudad Real 
                   805                    798                    805 
               Córdoba                 Cuenca               Gipuzkoa 
                   805                    805                    805 
                Girona                Granada            Guadalajara 
                   805                    805                    805 
                Huelva                 Huesca                   Jaén 
                   805                    805                    805 
            Las Palmas                   León                 Lleida 
                   805                    805                    805 
                  Lugo                 Madrid                 Málaga 
                   805                    805                    805 
               Melilla                 Murcia                Navarra 
                   799                    805                    805 
              Palencia             Pontevedra    Province of Ourense 
                   805                    805                    805 
                 Rioja              Salamanca Santa Cruz de Tenerife 
                   805                    805                    805 
               Segovia                Seville                  Soria 
                   805                    805                    805 
             Tarragona                 Teruel                 Toledo 
                   805                    805                    805 
              Valencia             Valladolid                 Zamora 
                   805                    805                    805 
              Zaragoza 
                   805 

To clean the data, the following actions will be taken:

google_data <- google_data %>% 
      drop_na(sub_region_1, sub_region_2) %>% 
      select(-country_region, -country_region_code, -metro_area, -census_fips_code, -place_id) %>% 
      rename(
            "CA"                = sub_region_1,
            "province"          = sub_region_2,
            "fecha"             = date,
            "retail_recreation" = retail_and_recreation_percent_change_from_baseline,
            "grocery_pharmacy"  = grocery_and_pharmacy_percent_change_from_baseline,
            "parks"             = parks_percent_change_from_baseline,
            "transit_stations"  = transit_stations_percent_change_from_baseline,
            "workplaces"        = workplaces_percent_change_from_baseline,
            "residential"       = residential_percent_change_from_baseline
      )
google_data
# A tibble: 41,847 × 10
   CA      province iso_3166_2_code fecha      retail_recreati… grocery_pharmacy
   <chr>   <chr>    <chr>           <date>                <dbl>            <dbl>
 1 Andalu… Almería  ES-AL           2020-02-15                5               -3
 2 Andalu… Almería  ES-AL           2020-02-16               -2                0
 3 Andalu… Almería  ES-AL           2020-02-17                0               -2
 4 Andalu… Almería  ES-AL           2020-02-18               -3               -3
 5 Andalu… Almería  ES-AL           2020-02-19               -1               -3
 6 Andalu… Almería  ES-AL           2020-02-20                1               -2
 7 Andalu… Almería  ES-AL           2020-02-21                2               -1
 8 Andalu… Almería  ES-AL           2020-02-22                4               -1
 9 Andalu… Almería  ES-AL           2020-02-23                1                4
10 Andalu… Almería  ES-AL           2020-02-24                1                0
# … with 41,837 more rows, and 4 more variables: parks <dbl>,
#   transit_stations <dbl>, workplaces <dbl>, residential <dbl>
skim(google_data)
Data summary
Name google_data
Number of rows 41847
Number of columns 10
_______________________
Column type frequency:
character 3
Date 1
numeric 6
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
CA 0 1 5 19 0 19 0
province 0 1 4 22 0 52 0
iso_3166_2_code 0 1 4 5 0 52 0

Variable type: Date

skim_variable n_missing complete_rate min max median n_unique
fecha 0 1 2020-02-15 2022-04-29 2021-03-23 805

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
retail_recreation 56 1.00 -23.70 26.35 -97 -34 -20 -8 100 ▂▇▇▁▁
grocery_pharmacy 473 0.99 3.12 27.63 -96 -7 5 16 258 ▁▇▁▁▁
parks 305 0.99 18.24 60.28 -94 -14 9 38 569 ▇▂▁▁▁
transit_stations 1410 0.97 -16.01 29.57 -100 -32 -15 1 177 ▂▇▂▁▁
workplaces 42 1.00 -20.59 19.36 -92 -29 -16 -8 70 ▁▂▇▁▁
residential 387 0.99 5.76 7.47 -12 1 4 8 48 ▂▇▁▁▁

At this point, only the numeric variables contains NAs. As this information is embedded in time series, it will be possible to impute missing values.

Missing values are presented in all the provinces but mostly in Ceuta and Melilla.

google_data %>% 
      pivot_longer(cols = 5:10, names_to = "variables") %>% 
      filter(is.na(value)) %>% 
      pull(province) %>% 
      table() %>% 
      sort(decreasing = TRUE)
.
              Ceuta             Melilla               Soria            Asturias 
               1054                 623                 146                 103 
             Murcia              Teruel            Palencia              Cuenca 
                 96                  59                  53                  52 
              Ávila              Huesca              Zamora               Rioja 
                 51                  49                  49                  45 
             Burgos             Segovia Province of Ourense           Cantabria 
                 37                  35                  29                  28 
               Lugo              Huelva             Cáceres         Guadalajara 
                 28                  25                  22                  21 
             Lleida                León         Ciudad Real            Albacete 
                 17                  15                  10                   8 
            Navarra               Álava                Jaén           Salamanca 
                  7                   3                   3                   3 
             Madrid          Valladolid 
                  1                   1 

To impute missing data, we will convert the data to time series:

google_TimeS <- google_data %>% 
      pivot_longer(cols = 5:10, names_to = "variables") %>% 
      as_tsibble(index = fecha, key = c(variables, province))

For the imputation of missing values the procedure to be followed will be as follows:

The interpolation uses either linear, spline or stineman interpolation to replace missing values. In our case, we will use the linear one.

As an example, we will show how interpolation works for “grocery_pharmacy” data in Asturias.

imp <- google_TimeS %>% 
      filter(variables == "grocery_pharmacy") %>% 
      select(-variables) %>% 
      group_by(province) %>% 
      na_interpolation() %>% 
      rename("mob_grocery_pharmacy" = value) %>% 
      filter(province == "Asturias")
interpolation_test <- google_TimeS %>% 
      filter(variables == "grocery_pharmacy") %>% 
      select(-variables) %>% 
      rename("mob_grocery_pharmacy" = value) %>% 
      filter(province == "Asturias")
ggplot_na_imputations(interpolation_test$mob_grocery_pharmacy, imp$mob_grocery_pharmacy)

The interpolation works fine, so we will proceed to impute missing data for the rest of provinces/variables.

grocery_pharmacy_data <- google_TimeS %>% 
      filter(variables == "grocery_pharmacy") %>% 
      select(-variables) %>% 
      group_by(province) %>% 
      na_interpolation() %>% 
      rename("mob_grocery_pharmacy" = value)
grocery_parks_data <- google_TimeS %>% 
      filter(variables == "parks") %>% 
      select(-variables) %>%
      group_by(province) %>% 
      na_interpolation() %>% 
      rename("mob_parks" = value)
grocery_residential_data <- google_TimeS %>% 
      filter(variables == "residential") %>% 
      select(-variables) %>%
      group_by(province) %>% 
      na_interpolation() %>% 
      rename("mob_residential" = value)
grocery_retail_recreation_data <- google_TimeS %>% 
      filter(variables == "retail_recreation") %>% 
      select(-variables) %>%
      group_by(province) %>% 
      na_interpolation() %>% 
      rename("mob_retail_recreation" = value)
grocery_transit_stations_data <- google_TimeS %>% 
      filter(variables == "transit_stations") %>% 
      select(-variables) %>%
      group_by(province) %>% 
      na_interpolation() %>% 
      rename("mob_transit_stations" = value)
grocery_workplaces_data <- google_TimeS %>% 
      filter(variables == "workplaces") %>% 
      select(-variables) %>%
      group_by(province) %>% 
      na_interpolation() %>% 
      rename("mob_workplaces" = value)

Once imputed missing data, we can combine the data again

google_TimeS_imputed <- grocery_pharmacy_data %>% 
      inner_join(grocery_parks_data, by=c("CA", "province", "iso_3166_2_code", "fecha")) %>% 
      inner_join(grocery_residential_data, by=c("CA", "province", "iso_3166_2_code", "fecha")) %>% 
      inner_join(grocery_retail_recreation_data, by=c("CA", "province", "iso_3166_2_code", "fecha")) %>% 
      inner_join(grocery_transit_stations_data, by=c("CA", "province", "iso_3166_2_code", "fecha")) %>% 
      inner_join(grocery_workplaces_data, by=c("CA", "province", "iso_3166_2_code", "fecha"))
google_TimeS_imputed
# A tibble: 41,847 × 10
# Groups:   province [52]
   CA      province iso_3166_2_code fecha      mob_grocery_pharmacy mob_parks
   <chr>   <chr>    <chr>           <date>                    <dbl>     <dbl>
 1 Galicia A Coruña ES-C            2020-02-15                   -2       -15
 2 Galicia A Coruña ES-C            2020-02-16                  -19       -27
 3 Galicia A Coruña ES-C            2020-02-17                    4        28
 4 Galicia A Coruña ES-C            2020-02-18                    0        21
 5 Galicia A Coruña ES-C            2020-02-19                    0        22
 6 Galicia A Coruña ES-C            2020-02-20                    3        17
 7 Galicia A Coruña ES-C            2020-02-21                   -1        27
 8 Galicia A Coruña ES-C            2020-02-22                   -4        32
 9 Galicia A Coruña ES-C            2020-02-23                   10        29
10 Galicia A Coruña ES-C            2020-02-24                   13        71
# … with 41,837 more rows, and 4 more variables: mob_residential <dbl>,
#   mob_retail_recreation <dbl>, mob_transit_stations <dbl>,
#   mob_workplaces <dbl>

Apart from missing data, there are also some gaps in the data for Ceuta and Melilla.

google_TimeS_imputed %>% 
      pivot_longer(cols = 5:10, names_to = "variables") %>% 
      as_tsibble(index = fecha, key = c(variables, province)) %>% 
      has_gaps(.full = TRUE) %>% 
      filter(.gaps == TRUE)
# A tibble: 12 × 3
   variables             province .gaps
   <chr>                 <chr>    <lgl>
 1 mob_grocery_pharmacy  Ceuta    TRUE 
 2 mob_grocery_pharmacy  Melilla  TRUE 
 3 mob_parks             Ceuta    TRUE 
 4 mob_parks             Melilla  TRUE 
 5 mob_residential       Ceuta    TRUE 
 6 mob_residential       Melilla  TRUE 
 7 mob_retail_recreation Ceuta    TRUE 
 8 mob_retail_recreation Melilla  TRUE 
 9 mob_transit_stations  Ceuta    TRUE 
10 mob_transit_stations  Melilla  TRUE 
11 mob_workplaces        Ceuta    TRUE 
12 mob_workplaces        Melilla  TRUE 
google_gaps <- google_TimeS_imputed %>% 
      pivot_longer(cols = 5:10, names_to = "variables") %>% 
      as_tsibble(index = fecha, key = c(variables, province)) %>% 
      count_gaps(.full = TRUE)
google_gaps
# A tibble: 42 × 5
   variables            province .from      .to           .n
   <chr>                <chr>    <date>     <date>     <int>
 1 mob_grocery_pharmacy Ceuta    2020-08-22 2020-08-23     2
 2 mob_grocery_pharmacy Ceuta    2020-08-29 2020-08-30     2
 3 mob_grocery_pharmacy Ceuta    2020-09-02 2020-09-02     1
 4 mob_grocery_pharmacy Ceuta    2020-09-05 2020-09-06     2
 5 mob_grocery_pharmacy Melilla  2020-08-22 2020-08-23     2
 6 mob_grocery_pharmacy Melilla  2020-08-29 2020-08-30     2
 7 mob_grocery_pharmacy Melilla  2020-09-05 2020-09-06     2
 8 mob_parks            Ceuta    2020-08-22 2020-08-23     2
 9 mob_parks            Ceuta    2020-08-29 2020-08-30     2
10 mob_parks            Ceuta    2020-09-02 2020-09-02     1
# … with 32 more rows

Since in further analysis we will not use “Ceuta” or “Melilla” data, we chose to eliminate them rather than to impute the missing values.

google_TimeS_imputed <- google_TimeS_imputed %>% 
      filter(!province %in% c("Ceuta", "Melilla"))
google_TimeS_imputed
# A tibble: 40,250 × 10
# Groups:   province [50]
   CA      province iso_3166_2_code fecha      mob_grocery_pharmacy mob_parks
   <chr>   <chr>    <chr>           <date>                    <dbl>     <dbl>
 1 Galicia A Coruña ES-C            2020-02-15                   -2       -15
 2 Galicia A Coruña ES-C            2020-02-16                  -19       -27
 3 Galicia A Coruña ES-C            2020-02-17                    4        28
 4 Galicia A Coruña ES-C            2020-02-18                    0        21
 5 Galicia A Coruña ES-C            2020-02-19                    0        22
 6 Galicia A Coruña ES-C            2020-02-20                    3        17
 7 Galicia A Coruña ES-C            2020-02-21                   -1        27
 8 Galicia A Coruña ES-C            2020-02-22                   -4        32
 9 Galicia A Coruña ES-C            2020-02-23                   10        29
10 Galicia A Coruña ES-C            2020-02-24                   13        71
# … with 40,240 more rows, and 4 more variables: mob_residential <dbl>,
#   mob_retail_recreation <dbl>, mob_transit_stations <dbl>,
#   mob_workplaces <dbl>
skim(google_TimeS_imputed)
Data summary
Name google_TimeS_imputed
Number of rows 40250
Number of columns 10
_______________________
Column type frequency:
character 2
Date 1
numeric 6
________________________
Group variables province

Variable type: character

skim_variable province n_missing complete_rate min max empty n_unique whitespace
CA A Coruña 0 1 7 7 0 1 0
CA Álava 0 1 14 14 0 1 0
CA Albacete 0 1 17 17 0 1 0
CA Alicante 0 1 19 19 0 1 0
CA Almería 0 1 9 9 0 1 0
CA Asturias 0 1 8 8 0 1 0
CA Ávila 0 1 16 16 0 1 0
CA Badajoz 0 1 11 11 0 1 0
CA Baleares 0 1 16 16 0 1 0
CA Barcelona 0 1 9 9 0 1 0
CA Biscay 0 1 14 14 0 1 0
CA Burgos 0 1 16 16 0 1 0
CA Cáceres 0 1 11 11 0 1 0
CA Cádiz 0 1 9 9 0 1 0
CA Cantabria 0 1 9 9 0 1 0
CA Castellón 0 1 19 19 0 1 0
CA Ciudad Real 0 1 17 17 0 1 0
CA Córdoba 0 1 9 9 0 1 0
CA Cuenca 0 1 17 17 0 1 0
CA Gipuzkoa 0 1 14 14 0 1 0
CA Girona 0 1 9 9 0 1 0
CA Granada 0 1 9 9 0 1 0
CA Guadalajara 0 1 17 17 0 1 0
CA Huelva 0 1 9 9 0 1 0
CA Huesca 0 1 6 6 0 1 0
CA Jaén 0 1 9 9 0 1 0
CA Las Palmas 0 1 14 14 0 1 0
CA León 0 1 16 16 0 1 0
CA Lleida 0 1 9 9 0 1 0
CA Lugo 0 1 7 7 0 1 0
CA Madrid 0 1 19 19 0 1 0
CA Málaga 0 1 9 9 0 1 0
CA Murcia 0 1 16 16 0 1 0
CA Navarra 0 1 7 7 0 1 0
CA Palencia 0 1 16 16 0 1 0
CA Pontevedra 0 1 7 7 0 1 0
CA Province of Ourense 0 1 7 7 0 1 0
CA Rioja 0 1 8 8 0 1 0
CA Salamanca 0 1 16 16 0 1 0
CA Santa Cruz de Tenerife 0 1 14 14 0 1 0
CA Segovia 0 1 16 16 0 1 0
CA Seville 0 1 9 9 0 1 0
CA Soria 0 1 16 16 0 1 0
CA Tarragona 0 1 9 9 0 1 0
CA Teruel 0 1 6 6 0 1 0
CA Toledo 0 1 17 17 0 1 0
CA Valencia 0 1 19 19 0 1 0
CA Valladolid 0 1 16 16 0 1 0
CA Zamora 0 1 16 16 0 1 0
CA Zaragoza 0 1 6 6 0 1 0
iso_3166_2_code A Coruña 0 1 4 4 0 1 0
iso_3166_2_code Álava 0 1 5 5 0 1 0
iso_3166_2_code Albacete 0 1 5 5 0 1 0
iso_3166_2_code Alicante 0 1 4 4 0 1 0
iso_3166_2_code Almería 0 1 5 5 0 1 0
iso_3166_2_code Asturias 0 1 5 5 0 1 0
iso_3166_2_code Ávila 0 1 5 5 0 1 0
iso_3166_2_code Badajoz 0 1 5 5 0 1 0
iso_3166_2_code Baleares 0 1 5 5 0 1 0
iso_3166_2_code Barcelona 0 1 4 4 0 1 0
iso_3166_2_code Biscay 0 1 5 5 0 1 0
iso_3166_2_code Burgos 0 1 5 5 0 1 0
iso_3166_2_code Cáceres 0 1 5 5 0 1 0
iso_3166_2_code Cádiz 0 1 5 5 0 1 0
iso_3166_2_code Cantabria 0 1 5 5 0 1 0
iso_3166_2_code Castellón 0 1 5 5 0 1 0
iso_3166_2_code Ciudad Real 0 1 5 5 0 1 0
iso_3166_2_code Córdoba 0 1 5 5 0 1 0
iso_3166_2_code Cuenca 0 1 5 5 0 1 0
iso_3166_2_code Gipuzkoa 0 1 5 5 0 1 0
iso_3166_2_code Girona 0 1 5 5 0 1 0
iso_3166_2_code Granada 0 1 5 5 0 1 0
iso_3166_2_code Guadalajara 0 1 5 5 0 1 0
iso_3166_2_code Huelva 0 1 4 4 0 1 0
iso_3166_2_code Huesca 0 1 5 5 0 1 0
iso_3166_2_code Jaén 0 1 4 4 0 1 0
iso_3166_2_code Las Palmas 0 1 5 5 0 1 0
iso_3166_2_code León 0 1 5 5 0 1 0
iso_3166_2_code Lleida 0 1 4 4 0 1 0
iso_3166_2_code Lugo 0 1 5 5 0 1 0
iso_3166_2_code Madrid 0 1 5 5 0 1 0
iso_3166_2_code Málaga 0 1 5 5 0 1 0
iso_3166_2_code Murcia 0 1 5 5 0 1 0
iso_3166_2_code Navarra 0 1 5 5 0 1 0
iso_3166_2_code Palencia 0 1 4 4 0 1 0
iso_3166_2_code Pontevedra 0 1 5 5 0 1 0
iso_3166_2_code Province of Ourense 0 1 5 5 0 1 0
iso_3166_2_code Rioja 0 1 5 5 0 1 0
iso_3166_2_code Salamanca 0 1 5 5 0 1 0
iso_3166_2_code Santa Cruz de Tenerife 0 1 5 5 0 1 0
iso_3166_2_code Segovia 0 1 5 5 0 1 0
iso_3166_2_code Seville 0 1 5 5 0 1 0
iso_3166_2_code Soria 0 1 5 5 0 1 0
iso_3166_2_code Tarragona 0 1 4 4 0 1 0
iso_3166_2_code Teruel 0 1 5 5 0 1 0
iso_3166_2_code Toledo 0 1 5 5 0 1 0
iso_3166_2_code Valencia 0 1 4 4 0 1 0
iso_3166_2_code Valladolid 0 1 5 5 0 1 0
iso_3166_2_code Zamora 0 1 5 5 0 1 0
iso_3166_2_code Zaragoza 0 1 4 4 0 1 0

Variable type: Date

skim_variable province n_missing complete_rate min max median n_unique
fecha A Coruña 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Álava 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Albacete 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Alicante 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Almería 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Asturias 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Ávila 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Badajoz 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Baleares 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Barcelona 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Biscay 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Burgos 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Cáceres 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Cádiz 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Cantabria 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Castellón 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Ciudad Real 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Córdoba 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Cuenca 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Gipuzkoa 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Girona 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Granada 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Guadalajara 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Huelva 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Huesca 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Jaén 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Las Palmas 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha León 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Lleida 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Lugo 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Madrid 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Málaga 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Murcia 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Navarra 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Palencia 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Pontevedra 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Province of Ourense 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Rioja 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Salamanca 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Santa Cruz de Tenerife 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Segovia 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Seville 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Soria 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Tarragona 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Teruel 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Toledo 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Valencia 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Valladolid 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Zamora 0 1 2020-02-15 2022-04-29 2021-03-23 805
fecha Zaragoza 0 1 2020-02-15 2022-04-29 2021-03-23 805

Variable type: numeric

skim_variable province n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
mob_grocery_pharmacy A Coruña 0 1 2.47 24.83 -95 -3 7.00 14.0 120 ▁▁▇▁▁
mob_grocery_pharmacy Álava 0 1 -0.58 22.24 -93 -6 4.00 11.0 59 ▁▁▃▇▁
mob_grocery_pharmacy Albacete 0 1 4.12 28.57 -95 -4 5.00 18.0 160 ▁▇▇▁▁
mob_grocery_pharmacy Alicante 0 1 4.62 30.23 -91 -5 5.00 17.0 157 ▁▇▆▁▁
mob_grocery_pharmacy Almería 0 1 2.66 28.81 -92 -7 2.00 14.0 141 ▁▆▇▁▁
mob_grocery_pharmacy Asturias 0 1 -0.76 19.96 -94 -3 3.00 9.0 42 ▁▁▁▇▁
mob_grocery_pharmacy Ávila 0 1 16.14 36.19 -93 2 17.00 31.0 207 ▂▇▃▁▁
mob_grocery_pharmacy Badajoz 0 1 4.24 26.47 -92 -5 5.00 17.0 158 ▁▇▇▁▁
mob_grocery_pharmacy Baleares 0 1 1.27 24.34 -87 -8 2.00 13.0 99 ▁▂▇▁▁
mob_grocery_pharmacy Barcelona 0 1 -4.14 20.77 -91 -10 0.00 9.0 58 ▁▁▆▇▁
mob_grocery_pharmacy Biscay 0 1 2.48 23.59 -94 -4 8.00 16.0 59 ▁▁▂▇▁
mob_grocery_pharmacy Burgos 0 1 8.83 29.66 -94 1 11.00 22.0 173 ▂▇▇▁▁
mob_grocery_pharmacy Cáceres 0 1 1.42 24.30 -93 -5 4.00 14.0 101 ▁▁▇▁▁
mob_grocery_pharmacy Cádiz 0 1 5.02 30.70 -92 -4 6.00 15.0 179 ▁▇▂▁▁
mob_grocery_pharmacy Cantabria 0 1 10.71 33.37 -92 -1 10.00 22.0 205 ▁▇▂▁▁
mob_grocery_pharmacy Castellón 0 1 11.81 32.86 -93 0 13.00 27.0 179 ▂▇▇▁▁
mob_grocery_pharmacy Ciudad Real 0 1 -0.50 26.79 -95 -6 1.00 8.0 162 ▁▇▃▁▁
mob_grocery_pharmacy Córdoba 0 1 0.96 25.85 -93 -9 4.00 13.0 164 ▁▇▅▁▁
mob_grocery_pharmacy Cuenca 0 1 3.81 28.39 -95 -7 5.00 18.0 180 ▁▇▃▁▁
mob_grocery_pharmacy Gipuzkoa 0 1 -1.58 21.61 -92 -7 2.00 10.0 52 ▁▁▂▇▁
mob_grocery_pharmacy Girona 0 1 13.96 30.71 -86 2 15.00 27.0 129 ▁▂▇▂▁
mob_grocery_pharmacy Granada 0 1 -8.29 22.15 -93 -14 -5.00 3.0 100 ▁▂▇▁▁
mob_grocery_pharmacy Guadalajara 0 1 4.96 24.11 -93 -1 9.00 15.0 91 ▁▁▇▂▁
mob_grocery_pharmacy Huelva 0 1 18.61 38.20 -89 3 18.00 29.0 258 ▁▇▁▁▁
mob_grocery_pharmacy Huesca 0 1 18.73 35.94 -92 3 19.00 34.0 185 ▁▇▇▁▁
mob_grocery_pharmacy Jaén 0 1 6.35 30.42 -95 -4 8.00 19.0 213 ▁▇▁▁▁
mob_grocery_pharmacy Las Palmas 0 1 -9.23 20.16 -88 -18 -8.00 5.0 61 ▁▂▇▅▁
mob_grocery_pharmacy León 0 1 5.59 29.61 -96 -2 8.00 18.0 182 ▁▇▃▁▁
mob_grocery_pharmacy Lleida 0 1 5.27 24.38 -90 -5 8.00 20.0 69 ▁▁▅▇▁
mob_grocery_pharmacy Lugo 0 1 11.99 29.07 -93 3 15.00 26.0 131 ▁▂▇▁▁
mob_grocery_pharmacy Madrid 0 1 -6.40 19.37 -87 -13 -3.00 6.0 50 ▁▁▆▇▁
mob_grocery_pharmacy Málaga 0 1 2.88 30.53 -91 -8 4.00 14.0 156 ▁▇▆▁▁
mob_grocery_pharmacy Murcia 0 1 0.33 20.13 -92 -4 3.00 13.0 53 ▁▁▂▇▁
mob_grocery_pharmacy Navarra 0 1 6.88 23.15 -92 1 11.00 18.0 74 ▁▁▅▇▁
mob_grocery_pharmacy Palencia 0 1 3.54 25.36 -94 -3 8.00 17.0 102 ▁▂▇▂▁
mob_grocery_pharmacy Pontevedra 0 1 7.17 26.29 -94 2 10.00 18.0 154 ▁▃▇▁▁
mob_grocery_pharmacy Province of Ourense 0 1 3.39 25.50 -95 -4 6.00 17.0 113 ▁▁▇▁▁
mob_grocery_pharmacy Rioja 0 1 3.17 23.32 -90 -3 6.00 16.0 125 ▁▂▇▁▁
mob_grocery_pharmacy Salamanca 0 1 -1.33 24.82 -94 -8 4.00 13.0 90 ▁▁▇▂▁
mob_grocery_pharmacy Santa Cruz de Tenerife 0 1 -9.84 18.64 -89 -16 -6.00 2.0 43 ▁▁▅▇▁
mob_grocery_pharmacy Segovia 0 1 18.64 31.83 -93 9 22.00 34.0 124 ▁▁▇▂▁
mob_grocery_pharmacy Seville 0 1 -4.90 22.74 -91 -12 -1.00 7.0 117 ▁▃▇▁▁
mob_grocery_pharmacy Soria 0 1 -0.86 25.35 -94 -10 4.00 12.0 72 ▁▂▇▇▁
mob_grocery_pharmacy Tarragona 0 1 12.37 28.75 -88 2 15.00 26.0 126 ▁▂▇▁▁
mob_grocery_pharmacy Teruel 0 1 5.79 26.99 -95 -2 8.00 19.0 104 ▁▁▇▂▁
mob_grocery_pharmacy Toledo 0 1 3.19 24.38 -94 -2 5.00 15.0 125 ▁▁▇▁▁
mob_grocery_pharmacy Valencia 0 1 -1.41 24.09 -94 -7 1.00 11.0 92 ▁▁▇▁▁
mob_grocery_pharmacy Valladolid 0 1 1.92 30.18 -95 -8 5.00 14.0 199 ▁▇▁▁▁
mob_grocery_pharmacy Zamora 0 1 2.46 26.15 -94 -2 5.00 13.0 150 ▁▅▇▁▁
mob_grocery_pharmacy Zaragoza 0 1 -1.55 21.95 -90 -9 3.00 11.0 88 ▁▁▇▂▁
mob_parks A Coruña 0 1 33.56 59.36 -87 1 26.00 58.0 303 ▂▇▂▁▁
mob_parks Álava 0 1 5.60 32.65 -89 -11 8.00 26.0 136 ▁▅▇▁▁
mob_parks Albacete 0 1 18.94 43.99 -88 -6 18.00 46.0 191 ▂▇▆▁▁
mob_parks Alicante 0 1 20.31 54.89 -93 -13 12.00 44.0 203 ▂▇▃▂▁
mob_parks Almería 0 1 23.56 56.80 -90 -11 11.00 46.0 216 ▂▇▂▁▁
mob_parks Asturias 0 1 45.19 71.02 -88 5 33.00 70.0 333 ▂▇▂▁▁
mob_parks Ávila 0 1 54.73 84.95 -85 3 36.00 88.0 569 ▇▅▁▁▁
mob_parks Badajoz 0 1 -7.12 25.91 -83 -18 -4.00 8.0 104 ▁▆▇▁▁
mob_parks Baleares 0 1 48.81 74.65 -92 2 29.00 93.0 294 ▂▇▃▂▁
mob_parks Barcelona 0 1 -10.48 23.79 -93 -19 -6.00 5.0 33 ▁▁▃▇▃
mob_parks Biscay 0 1 9.17 39.06 -93 -13 10.00 35.0 140 ▂▅▇▂▁
mob_parks Burgos 0 1 45.82 59.50 -81 10 35.00 78.0 260 ▂▇▃▁▁
mob_parks Cáceres 0 1 16.81 40.82 -83 -3 14.00 37.0 261 ▂▇▂▁▁
mob_parks Cádiz 0 1 18.41 58.67 -92 -16 7.00 41.0 202 ▂▇▃▂▁
mob_parks Cantabria 0 1 63.89 109.13 -92 1 36.00 92.0 543 ▇▆▁▁▁
mob_parks Castellón 0 1 40.49 80.06 -92 -8 19.00 66.0 360 ▅▇▂▁▁
mob_parks Ciudad Real 0 1 5.66 34.59 -87 -11 8.00 26.0 165 ▂▇▇▁▁
mob_parks Córdoba 0 1 -11.88 25.20 -88 -23 -8.00 3.0 133 ▁▇▃▁▁
mob_parks Cuenca 0 1 21.96 56.06 -87 -12 14.00 49.0 360 ▆▇▂▁▁
mob_parks Gipuzkoa 0 1 11.01 51.29 -94 -20 4.00 35.0 210 ▂▇▃▁▁
mob_parks Girona 0 1 64.72 117.50 -90 -4 22.00 99.0 539 ▇▃▂▁▁
mob_parks Granada 0 1 -6.72 34.01 -91 -26 -5.00 13.0 129 ▂▇▇▁▁
mob_parks Guadalajara 0 1 19.32 43.40 -85 -4 14.00 47.0 220 ▂▇▃▁▁
mob_parks Huelva 0 1 37.97 60.11 -78 0 27.00 63.0 228 ▂▇▃▂▁
mob_parks Huesca 0 1 56.50 97.50 -86 -5 29.00 88.0 489 ▇▆▂▁▁
mob_parks Jaén 0 1 -1.66 28.52 -87 -16 0.00 15.0 120 ▁▅▇▁▁
mob_parks Las Palmas 0 1 -25.66 22.06 -93 -37 -22.00 -10.0 30 ▁▁▇▇▁
mob_parks León 0 1 49.33 65.41 -83 13 37.00 79.0 355 ▂▇▂▁▁
mob_parks Lleida 0 1 38.19 64.32 -80 2 24.00 63.0 329 ▃▇▂▁▁
mob_parks Lugo 0 1 26.86 55.44 -77 -6 16.00 45.0 261 ▃▇▂▁▁
mob_parks Madrid 0 1 -9.83 28.19 -92 -22 -6.00 10.0 77 ▁▂▇▃▁
mob_parks Málaga 0 1 6.13 43.88 -92 -18 2.00 27.0 152 ▂▇▆▂▁
mob_parks Murcia 0 1 6.97 38.29 -92 -14 6.00 27.0 135 ▁▆▇▂▁
mob_parks Navarra 0 1 12.19 37.84 -88 -8 10.00 36.0 134 ▁▅▇▂▁
mob_parks Palencia 0 1 51.64 61.15 -80 16 43.00 83.0 294 ▂▇▃▁▁
mob_parks Pontevedra 0 1 33.11 66.75 -89 -3 21.00 54.0 315 ▃▇▂▁▁
mob_parks Province of Ourense 0 1 14.79 40.34 -83 -8 14.00 37.0 168 ▂▇▆▁▁
mob_parks Rioja 0 1 5.99 37.34 -90 -15 5.00 27.6 138 ▂▇▇▂▁
mob_parks Salamanca 0 1 9.45 40.39 -89 -10 9.00 29.0 207 ▂▇▃▁▁
mob_parks Santa Cruz de Tenerife 0 1 -19.53 23.72 -92 -30 -16.00 -4.0 64 ▁▃▇▂▁
mob_parks Segovia 0 1 11.20 50.98 -93 -19 10.00 39.0 333 ▅▇▁▁▁
mob_parks Seville 0 1 -17.95 25.70 -93 -30 -13.00 -3.0 95 ▁▅▇▁▁
mob_parks Soria 0 1 54.93 80.96 -89 7 36.00 88.0 414 ▅▇▂▁▁
mob_parks Tarragona 0 1 51.91 89.18 -90 -2 21.00 94.0 369 ▅▇▂▁▁
mob_parks Teruel 0 1 19.36 63.73 -92 -18 11.00 44.0 387 ▇▇▁▁▁
mob_parks Toledo 0 1 -8.53 31.77 -89 -25 -6.00 9.0 166 ▂▇▂▁▁
mob_parks Valencia 0 1 5.68 39.02 -93 -16 5.00 25.0 106 ▁▃▇▃▁
mob_parks Valladolid 0 1 15.60 37.75 -90 -3 19.00 40.0 140 ▁▃▇▂▁
mob_parks Zamora 0 1 30.29 59.94 -82 -2 19.00 52.0 377 ▆▇▁▁▁
mob_parks Zaragoza 0 1 16.17 33.00 -87 1 19.00 36.0 222 ▁▇▃▁▁
mob_residential A Coruña 0 1 6.35 7.96 -7 1 4.00 9.0 46 ▇▇▁▁▁
mob_residential Álava 0 1 6.21 8.39 -10 2 4.00 8.0 46 ▃▇▁▁▁
mob_residential Albacete 0 1 4.59 7.92 -10 0 2.00 6.0 43 ▅▇▁▁▁
mob_residential Alicante 0 1 6.36 7.34 -5 2 4.00 8.0 42 ▇▆▁▁▁
mob_residential Almería 0 1 6.01 6.58 -4 2 5.00 7.0 41 ▇▅▁▁▁
mob_residential Asturias 0 1 5.34 7.44 -8 1 3.00 8.0 40 ▆▇▁▁▁
mob_residential Ávila 0 1 5.77 7.24 -5 1 4.00 8.0 40 ▇▅▁▁▁
mob_residential Badajoz 0 1 4.63 6.44 -7 1 3.00 6.0 37 ▆▇▁▁▁
mob_residential Baleares 0 1 5.53 7.81 -6 0 4.00 8.0 40 ▇▆▁▁▁
mob_residential Barcelona 0 1 9.00 8.45 -7 4 7.00 11.0 47 ▃▇▁▁▁
mob_residential Biscay 0 1 6.32 8.25 -10 2 4.00 9.0 45 ▃▇▁▁▁
mob_residential Burgos 0 1 4.13 8.00 -11 -1 2.00 7.0 43 ▃▇▁▁▁
mob_residential Cáceres 0 1 4.27 6.46 -5 0 2.00 6.0 36 ▇▃▁▁▁
mob_residential Cádiz 0 1 5.40 7.10 -5 1 3.00 7.0 38 ▇▆▁▁▁
mob_residential Cantabria 0 1 5.66 7.54 -5 1 4.00 7.0 42 ▇▅▁▁▁
mob_residential Castellón 0 1 6.20 7.66 -6 2 4.00 8.0 45 ▇▅▁▁▁
mob_residential Ciudad Real 0 1 4.91 7.22 -7 1 3.00 6.0 42 ▇▇▁▁▁
mob_residential Córdoba 0 1 5.34 6.97 -6 1 4.00 7.0 41 ▇▇▁▁▁
mob_residential Cuenca 0 1 4.82 7.24 -6 0 3.00 6.0 42 ▇▅▁▁▁
mob_residential Gipuzkoa 0 1 6.57 7.91 -6 2 5.00 9.0 44 ▇▆▁▁▁
mob_residential Girona 0 1 6.71 7.54 -5 2 5.00 9.0 42 ▇▆▂▁▁
mob_residential Granada 0 1 5.96 7.32 -6 1 4.00 8.0 40 ▇▇▂▁▁
mob_residential Guadalajara 0 1 6.80 7.83 -8 2 5.00 8.0 46 ▅▇▁▁▁
mob_residential Huelva 0 1 4.48 6.03 -6 1 3.00 6.0 33 ▆▇▂▁▁
mob_residential Huesca 0 1 4.94 6.96 -7 1 3.00 7.0 40 ▇▇▁▁▁
mob_residential Jaén 0 1 5.63 6.75 -5 2 4.00 7.0 40 ▇▅▁▁▁
mob_residential Las Palmas 0 1 9.09 5.72 0 5 8.00 10.0 40 ▇▆▁▁▁
mob_residential León 0 1 4.37 7.44 -9 0 2.00 7.0 40 ▅▇▁▁▁
mob_residential Lleida 0 1 5.69 7.15 -7 1 4.00 8.0 41 ▇▇▁▁▁
mob_residential Lugo 0 1 4.74 7.47 -9 0 3.00 7.0 44 ▆▇▁▁▁
mob_residential Madrid 0 1 8.95 9.18 -10 4 7.00 11.0 46 ▂▇▂▁▁
mob_residential Málaga 0 1 6.22 7.37 -4 2 4.00 8.0 40 ▇▆▁▁▁
mob_residential Murcia 0 1 5.04 7.38 -6 0 3.00 7.0 42 ▇▆▁▁▁
mob_residential Navarra 0 1 5.49 7.73 -6 1 3.00 7.0 43 ▇▆▁▁▁
mob_residential Palencia 0 1 4.33 7.46 -9 0 2.00 7.0 40 ▅▇▁▁▁
mob_residential Pontevedra 0 1 6.50 8.08 -6 2 4.00 9.0 48 ▇▅▁▁▁
mob_residential Province of Ourense 0 1 5.28 7.75 -9 1 3.00 8.0 44 ▆▇▁▁▁
mob_residential Rioja 0 1 4.74 7.67 -10 0 2.00 7.0 42 ▅▇▂▁▁
mob_residential Salamanca 0 1 5.42 7.41 -10 1 3.00 8.0 40 ▃▇▁▁▁
mob_residential Santa Cruz de Tenerife 0 1 9.11 5.96 -1 6 8.00 10.0 41 ▇▇▁▁▁
mob_residential Segovia 0 1 5.58 7.58 -6 1 3.00 8.0 42 ▇▆▁▁▁
mob_residential Seville 0 1 5.59 7.59 -7 1 4.00 8.0 42 ▆▇▁▁▁
mob_residential Soria 0 1 4.62 7.63 -8 0 2.00 7.0 38 ▇▇▂▁▁
mob_residential Tarragona 0 1 6.65 7.21 -4 2 5.00 9.0 41 ▇▅▁▁▁
mob_residential Teruel 0 1 4.54 7.21 -9 0 3.00 7.0 40 ▅▇▁▁▁
mob_residential Toledo 0 1 6.69 7.63 -4 2 5.00 8.0 45 ▇▅▁▁▁
mob_residential Valencia 0 1 6.53 7.86 -8 2 5.00 8.0 44 ▅▇▁▁▁
mob_residential Valladolid 0 1 5.54 8.03 -10 1 3.00 8.0 43 ▃▇▁▁▁
mob_residential Zamora 0 1 3.86 7.04 -7 -1 2.00 6.0 38 ▇▅▁▁▁
mob_residential Zaragoza 0 1 5.41 7.84 -12 1 4.00 8.0 43 ▂▇▁▁▁
mob_retail_recreation A Coruña 0 1 -28.17 23.34 -96 -37 -22.00 -13.0 15 ▁▁▃▇▂
mob_retail_recreation Álava 0 1 -30.00 21.83 -96 -37 -25.00 -15.0 26 ▂▂▇▇▁
mob_retail_recreation Albacete 0 1 -22.63 24.17 -97 -28 -16.00 -7.0 19 ▁▁▂▇▂
mob_retail_recreation Alicante 0 1 -19.75 27.20 -96 -29 -14.00 -2.0 39 ▂▂▆▇▁
mob_retail_recreation Almería 0 1 -17.06 26.99 -96 -28 -11.00 0.0 45 ▁▂▆▇▁
mob_retail_recreation Asturias 0 1 -26.49 24.13 -97 -34 -21.00 -11.0 15 ▁▁▃▇▃
mob_retail_recreation Ávila 0 1 -15.99 36.87 -95 -40 -14.00 4.0 100 ▃▇▇▂▁
mob_retail_recreation Badajoz 0 1 -27.61 22.27 -96 -33 -23.00 -13.0 33 ▂▂▇▇▁
mob_retail_recreation Baleares 0 1 -17.84 27.82 -95 -28 -15.00 2.0 39 ▂▂▇▇▂
mob_retail_recreation Barcelona 0 1 -32.91 21.91 -97 -43 -27.00 -17.0 3 ▁▁▃▇▅
mob_retail_recreation Biscay 0 1 -30.21 22.30 -97 -39 -25.00 -15.0 9 ▁▁▃▇▃
mob_retail_recreation Burgos 0 1 -23.66 25.80 -96 -36 -17.00 -6.0 29 ▁▂▃▇▁
mob_retail_recreation Cáceres 0 1 -21.43 26.02 -96 -29 -17.00 -6.0 46 ▂▂▇▆▁
mob_retail_recreation Cádiz 0 1 -15.86 28.82 -96 -27 -11.00 1.0 50 ▂▂▇▇▂
mob_retail_recreation Cantabria 0 1 -16.74 30.12 -96 -30 -15.00 -1.0 63 ▁▂▇▃▁
mob_retail_recreation Castellón 0 1 -17.96 28.15 -96 -27 -12.00 -1.0 49 ▂▂▇▇▁
mob_retail_recreation Ciudad Real 0 1 -27.90 22.74 -97 -33 -23.00 -14.0 42 ▁▁▇▃▁
mob_retail_recreation Córdoba 0 1 -26.62 21.36 -96 -33 -22.00 -13.0 23 ▁▁▅▇▁
mob_retail_recreation Cuenca 0 1 -16.85 30.79 -96 -31 -14.00 1.0 70 ▂▂▇▃▁
mob_retail_recreation Gipuzkoa 0 1 -29.78 20.82 -96 -35 -25.00 -16.0 12 ▁▁▃▇▂
mob_retail_recreation Girona 0 1 -12.74 34.29 -95 -34 -8.00 8.0 82 ▂▃▇▃▁
mob_retail_recreation Granada 0 1 -30.60 23.27 -97 -40 -24.00 -15.0 23 ▂▂▆▇▁
mob_retail_recreation Guadalajara 0 1 -22.43 23.79 -96 -29 -15.00 -7.0 27 ▁▁▃▇▁
mob_retail_recreation Huelva 0 1 -10.91 31.64 -94 -26 -7.00 7.0 66 ▂▂▇▅▁
mob_retail_recreation Huesca 0 1 -21.27 27.71 -96 -35 -18.00 -5.0 61 ▁▂▇▂▁
mob_retail_recreation Jaén 0 1 -27.36 21.50 -97 -34 -23.00 -14.0 27 ▁▁▆▇▁
mob_retail_recreation Las Palmas 0 1 -31.09 21.83 -97 -39 -29.00 -14.0 15 ▂▁▇▇▂
mob_retail_recreation León 0 1 -23.45 26.64 -96 -35 -16.00 -7.0 34 ▂▂▅▇▁
mob_retail_recreation Lleida 0 1 -27.55 23.10 -95 -40 -22.00 -12.0 18 ▁▁▃▇▂
mob_retail_recreation Lugo 0 1 -21.54 26.90 -95 -33 -15.00 -4.0 44 ▂▂▇▇▁
mob_retail_recreation Madrid 0 1 -32.62 21.35 -96 -38 -28.00 -19.0 4 ▁▁▃▇▂
mob_retail_recreation Málaga 0 1 -21.14 26.07 -97 -31 -16.00 -4.0 30 ▁▁▅▇▂
mob_retail_recreation Murcia 0 1 -27.37 21.76 -96 -34 -22.00 -13.0 7 ▁▁▂▇▅
mob_retail_recreation Navarra 0 1 -23.26 22.90 -95 -30 -18.00 -9.0 23 ▁▁▃▇▁
mob_retail_recreation Palencia 0 1 -19.57 28.81 -97 -34 -13.00 0.0 45 ▂▂▆▇▁
mob_retail_recreation Pontevedra 0 1 -25.54 23.57 -95 -36 -19.00 -11.0 17 ▁▁▃▇▂
mob_retail_recreation Province of Ourense 0 1 -25.16 23.78 -96 -34 -19.00 -10.0 49 ▁▂▇▃▁
mob_retail_recreation Rioja 0 1 -23.71 24.78 -96 -31 -18.00 -8.0 33 ▂▁▅▇▁
mob_retail_recreation Salamanca 0 1 -29.79 24.84 -97 -41 -24.00 -13.0 24 ▂▂▅▇▁
mob_retail_recreation Santa Cruz de Tenerife 0 1 -28.81 20.66 -97 -33 -26.00 -15.0 10 ▁▁▂▇▂
mob_retail_recreation Segovia 0 1 -21.20 30.42 -96 -39 -14.00 -2.0 62 ▂▃▇▃▁
mob_retail_recreation Seville 0 1 -26.91 22.30 -97 -35 -23.00 -11.0 23 ▁▁▆▇▁
mob_retail_recreation Soria 0 1 -17.23 33.54 -96 -38 -10.00 3.0 82 ▂▃▇▂▁
mob_retail_recreation Tarragona 0 1 -15.19 31.19 -95 -31 -11.00 4.0 68 ▂▃▇▃▁
mob_retail_recreation Teruel 0 1 -16.24 31.17 -96 -32 -13.00 0.0 94 ▂▅▇▁▁
mob_retail_recreation Toledo 0 1 -25.87 22.78 -96 -30 -19.00 -12.0 17 ▁▁▂▇▁
mob_retail_recreation Valencia 0 1 -26.73 23.00 -96 -33 -20.00 -11.0 10 ▁▁▂▇▅
mob_retail_recreation Valladolid 0 1 -29.66 23.46 -97 -39 -24.00 -13.0 13 ▁▁▃▇▂
mob_retail_recreation Zamora 0 1 -19.91 30.33 -96 -37 -15.00 -3.0 65 ▂▃▇▃▁
mob_retail_recreation Zaragoza 0 1 -29.41 20.63 -96 -36 -25.00 -16.0 22 ▁▁▆▇▁
mob_transit_stations A Coruña 0 1 -17.79 24.73 -92 -30 -15.00 0.0 40 ▁▂▇▇▁
mob_transit_stations Álava 0 1 -20.60 20.70 -92 -28 -16.00 -7.0 42 ▁▂▇▇▁
mob_transit_stations Albacete 0 1 -18.32 21.73 -92 -26 -15.00 -4.0 21 ▁▁▃▇▃
mob_transit_stations Alicante 0 1 -20.98 25.62 -93 -35 -18.00 -1.0 24 ▂▂▇▇▅
mob_transit_stations Almería 0 1 -0.41 29.26 -88 -13 2.00 19.0 61 ▂▂▇▇▂
mob_transit_stations Asturias 0 1 -17.30 20.87 -85 -26 -14.00 -4.0 26 ▁▁▅▇▂
mob_transit_stations Ávila 0 1 -9.47 28.68 -90 -22 -7.00 7.0 78 ▁▂▇▂▁
mob_transit_stations Badajoz 0 1 -8.54 23.12 -89 -16 -3.00 6.0 38 ▁▁▂▇▁
mob_transit_stations Baleares 0 1 -2.61 44.99 -92 -33 -8.00 17.0 120 ▂▇▆▃▁
mob_transit_stations Barcelona 0 1 -27.65 18.95 -91 -35 -25.00 -15.0 10 ▁▁▃▇▂
mob_transit_stations Biscay 0 1 -26.45 18.79 -91 -33 -22.00 -14.0 13 ▁▁▃▇▁
mob_transit_stations Burgos 0 1 2.38 42.13 -93 -22 5.00 24.0 135 ▂▆▇▂▁
mob_transit_stations Cáceres 0 1 9.82 44.07 -94 -13 10.00 38.0 165 ▂▇▇▂▁
mob_transit_stations Cádiz 0 1 -21.46 26.13 -93 -35 -18.00 -3.0 118 ▂▇▅▁▁
mob_transit_stations Cantabria 0 1 -10.91 27.11 -91 -24 -7.00 6.0 49 ▁▂▆▇▂
mob_transit_stations Castellón 0 1 -23.82 24.76 -93 -39 -21.00 -6.0 54 ▂▃▇▃▁
mob_transit_stations Ciudad Real 0 1 -26.81 23.81 -95 -37 -25.00 -9.0 33 ▂▂▇▇▁
mob_transit_stations Córdoba 0 1 -20.46 21.89 -92 -30 -17.00 -6.0 30 ▁▁▆▇▁
mob_transit_stations Cuenca 0 1 -4.59 29.80 -90 -20 -2.00 11.0 101 ▁▃▇▂▁
mob_transit_stations Gipuzkoa 0 1 -16.62 19.96 -89 -22 -11.00 -4.0 41 ▁▁▇▇▁
mob_transit_stations Girona 0 1 -11.15 29.55 -90 -23 -9.00 5.0 80 ▁▂▇▂▁
mob_transit_stations Granada 0 1 -14.85 26.04 -91 -27 -10.00 4.0 41 ▂▁▆▇▂
mob_transit_stations Guadalajara 0 1 -11.86 28.97 -93 -29 -10.00 10.0 51 ▂▂▇▇▂
mob_transit_stations Huelva 0 1 20.34 38.52 -85 -1 22.00 48.0 107 ▂▂▇▇▂
mob_transit_stations Huesca 0 1 -25.57 26.29 -92 -42 -25.00 -9.0 55 ▂▅▇▂▁
mob_transit_stations Jaén 0 1 -21.62 20.60 -94 -27 -18.00 -9.0 48 ▁▁▇▂▁
mob_transit_stations Las Palmas 0 1 -25.13 24.76 -92 -40 -27.00 -2.0 20 ▁▂▇▃▅
mob_transit_stations León 0 1 -12.26 26.59 -90 -24 -10.00 3.0 61 ▁▂▇▃▁
mob_transit_stations Lleida 0 1 -4.42 26.82 -89 -15 1.00 14.0 50 ▁▁▃▇▁
mob_transit_stations Lugo 0 1 -7.71 32.85 -90 -27 -6.85 11.0 130 ▂▇▇▁▁
mob_transit_stations Madrid 0 1 -33.40 19.63 -93 -42 -32.00 -19.0 10 ▁▁▇▇▁
mob_transit_stations Málaga 0 1 -22.89 25.52 -93 -37 -22.00 -3.0 33 ▂▂▇▆▂
mob_transit_stations Murcia 0 1 -21.17 19.80 -89 -29 -19.00 -7.0 26 ▁▁▆▇▁
mob_transit_stations Navarra 0 1 -23.33 22.52 -91 -35 -18.00 -7.0 16 ▁▁▅▇▅
mob_transit_stations Palencia 0 1 -22.80 23.15 -93 -34 -19.00 -8.0 53 ▁▂▇▃▁
mob_transit_stations Pontevedra 0 1 -10.89 36.19 -94 -34 -13.00 16.0 103 ▂▇▇▃▁
mob_transit_stations Province of Ourense 0 1 -20.04 25.65 -93 -35 -19.00 -1.0 79 ▁▆▇▂▁
mob_transit_stations Rioja 0 1 -21.79 24.65 -93 -34 -16.15 -4.0 40 ▂▃▇▇▁
mob_transit_stations Salamanca 0 1 -14.96 26.94 -94 -25 -9.00 3.0 52 ▂▂▇▇▁
mob_transit_stations Santa Cruz de Tenerife 0 1 -23.83 22.16 -91 -34 -25.00 -5.0 27 ▁▂▇▇▁
mob_transit_stations Segovia 0 1 -11.31 35.93 -95 -33 -11.00 19.0 130 ▃▇▇▁▁
mob_transit_stations Seville 0 1 -28.81 21.99 -94 -40 -27.00 -14.0 52 ▁▃▇▂▁
mob_transit_stations Soria 0 1 -10.53 26.89 -89 -26 -7.00 5.0 76 ▁▃▇▂▁
mob_transit_stations Tarragona 0 1 -17.46 25.20 -92 -28 -14.00 -3.0 52 ▁▂▇▅▁
mob_transit_stations Teruel 0 1 -11.41 35.64 -86 -40 -4.15 13.0 177 ▅▇▂▁▁
mob_transit_stations Toledo 0 1 -27.23 20.93 -94 -35 -21.00 -14.0 22 ▁▁▃▇▁
mob_transit_stations Valencia 0 1 -24.41 22.42 -93 -35 -21.00 -9.0 53 ▁▃▇▃▁
mob_transit_stations Valladolid 0 1 -19.97 24.79 -93 -33 -17.00 -2.0 27 ▁▂▆▇▃
mob_transit_stations Zamora 0 1 2.78 43.37 -100 -24 4.00 30.0 145 ▂▇▇▂▁
mob_transit_stations Zaragoza 0 1 -27.45 19.35 -91 -36 -24.00 -15.0 10 ▁▁▅▇▃
mob_workplaces A Coruña 0 1 -21.94 18.55 -89 -29 -17.00 -11.0 13 ▁▁▃▇▂
mob_workplaces Álava 0 1 -22.64 20.28 -90 -29 -15.00 -9.0 11 ▁▂▂▇▅
mob_workplaces Albacete 0 1 -19.12 19.09 -88 -27 -12.00 -7.0 12 ▁▁▂▇▅
mob_workplaces Alicante 0 1 -20.08 19.36 -89 -27 -14.00 -9.0 25 ▁▁▃▇▁
mob_workplaces Almería 0 1 -17.85 18.10 -87 -27 -12.00 -7.0 30 ▁▁▅▇▁
mob_workplaces Asturias 0 1 -23.33 17.05 -88 -28 -19.00 -13.0 12 ▁▁▂▇▁
mob_workplaces Ávila 0 1 -13.46 22.58 -84 -24 -9.00 -1.0 69 ▁▃▇▁▁
mob_workplaces Badajoz 0 1 -20.37 16.99 -85 -28 -14.00 -9.0 9 ▁▁▂▇▅
mob_workplaces Baleares 0 1 -16.41 22.67 -88 -24 -15.00 -6.0 70 ▁▂▇▁▁
mob_workplaces Barcelona 0 1 -30.01 19.76 -92 -39 -26.00 -17.0 6 ▁▂▃▇▃
mob_workplaces Biscay 0 1 -25.63 19.47 -91 -33 -19.00 -12.0 17 ▁▂▃▇▁
mob_workplaces Burgos 0 1 -16.73 20.20 -88 -25 -12.00 -4.0 39 ▁▂▆▇▁
mob_workplaces Cáceres 0 1 -14.95 19.35 -85 -25 -8.00 -1.0 22 ▁▁▃▇▃
mob_workplaces Cádiz 0 1 -19.24 18.85 -87 -26 -14.00 -8.0 20 ▁▁▃▇▂
mob_workplaces Cantabria 0 1 -19.24 18.69 -87 -25 -14.00 -9.0 32 ▁▂▅▇▁
mob_workplaces Castellón 0 1 -16.21 20.90 -89 -24 -9.00 -4.0 42 ▁▂▆▇▁
mob_workplaces Ciudad Real 0 1 -22.53 17.41 -88 -29 -17.00 -12.0 17 ▁▁▃▇▁
mob_workplaces Córdoba 0 1 -22.43 17.67 -88 -29 -16.00 -12.0 6 ▁▁▂▇▅
mob_workplaces Cuenca 0 1 -17.28 18.09 -86 -24 -12.00 -7.0 33 ▁▁▅▇▁
mob_workplaces Gipuzkoa 0 1 -27.12 18.05 -90 -32 -20.00 -16.0 4 ▁▁▂▇▂
mob_workplaces Girona 0 1 -16.25 20.65 -88 -24 -12.00 -5.0 52 ▁▁▇▂▁
mob_workplaces Granada 0 1 -25.26 18.27 -88 -33 -21.00 -14.0 8 ▁▁▃▇▃
mob_workplaces Guadalajara 0 1 -21.34 20.15 -90 -32 -15.00 -10.0 31 ▁▂▅▇▁
mob_workplaces Huelva 0 1 -13.72 18.60 -79 -22 -10.00 -3.0 45 ▁▁▇▅▁
mob_workplaces Huesca 0 1 -13.28 20.32 -85 -23 -9.00 1.0 37 ▁▁▅▇▁
mob_workplaces Jaén 0 1 -19.04 17.90 -88 -25 -13.00 -7.0 11 ▁▁▂▇▅
mob_workplaces Las Palmas 0 1 -25.87 16.63 -88 -33 -22.00 -15.0 5 ▁▁▂▇▃
mob_workplaces León 0 1 -17.66 18.92 -86 -25 -13.00 -5.0 26 ▁▁▃▇▁
mob_workplaces Lleida 0 1 -22.03 16.96 -87 -30 -17.00 -11.0 5 ▁▁▂▇▇
mob_workplaces Lugo 0 1 -15.89 17.41 -84 -23 -10.00 -4.0 19 ▁▁▂▇▂
mob_workplaces Madrid 0 1 -30.44 22.60 -92 -45 -27.00 -15.0 20 ▂▃▇▇▂
mob_workplaces Málaga 0 1 -21.63 19.72 -89 -29 -18.00 -10.0 29 ▁▁▆▇▁
mob_workplaces Murcia 0 1 -20.34 17.68 -88 -26 -16.00 -10.0 13 ▁▁▂▇▂
mob_workplaces Navarra 0 1 -21.07 19.43 -90 -30 -14.00 -8.0 15 ▁▁▃▇▂
mob_workplaces Palencia 0 1 -18.42 18.35 -85 -26 -12.00 -6.0 21 ▁▁▃▇▁
mob_workplaces Pontevedra 0 1 -22.84 17.54 -89 -28 -18.00 -13.0 12 ▁▁▂▇▂
mob_workplaces Province of Ourense 0 1 -19.81 17.20 -85 -25 -15.00 -8.0 10 ▁▁▂▇▅
mob_workplaces Rioja 0 1 -19.39 19.32 -89 -26 -13.00 -7.0 27 ▁▁▃▇▁
mob_workplaces Salamanca 0 1 -19.55 19.86 -87 -28 -14.00 -6.0 16 ▁▁▃▇▅
mob_workplaces Santa Cruz de Tenerife 0 1 -25.31 16.79 -88 -33 -21.00 -14.0 2 ▁▂▂▇▆
mob_workplaces Segovia 0 1 -16.72 20.47 -86 -25 -11.00 -5.0 45 ▁▂▇▆▁
mob_workplaces Seville 0 1 -23.28 19.04 -90 -32 -17.00 -10.0 9 ▁▁▃▇▅
mob_workplaces Soria 0 1 -16.23 19.22 -85 -24 -12.00 -2.0 24 ▁▁▃▇▂
mob_workplaces Tarragona 0 1 -19.20 19.96 -88 -26 -15.00 -9.0 45 ▁▁▇▂▁
mob_workplaces Teruel 0 1 -18.21 18.51 -87 -25 -15.00 -6.0 30 ▁▁▅▇▁
mob_workplaces Toledo 0 1 -23.11 17.88 -89 -30 -16.00 -13.0 9 ▁▁▂▇▂
mob_workplaces Valencia 0 1 -23.42 19.84 -90 -32 -17.00 -11.0 17 ▁▁▃▇▂
mob_workplaces Valladolid 0 1 -23.80 20.12 -90 -32 -18.00 -11.0 15 ▁▁▃▇▂
mob_workplaces Zamora 0 1 -19.79 16.76 -82 -25 -17.00 -11.0 27 ▁▂▆▇▁
mob_workplaces Zaragoza 0 1 -21.95 19.72 -90 -30 -16.00 -8.0 11 ▁▁▃▇▆